在生物制造4.0的关键需求的驱动下,我们引入了一种概率知识图杂交模型,该模型表征了基于风险和科学的生物处理机制的理解。它可以忠实地捕获重要特性,包括非线性反应,部分观察到的状态和非平稳动力学。考虑到非常有限的实际过程观测值,我们得出了后验分布量化模型估计不确定性。为了避免评估顽固的似然,使用顺序蒙特卡洛(ABC-SMC)的近似贝叶斯计算采样可用于近似后验分布。在高随机和模型不确定性下,匹配输出轨迹在计算上昂贵。因此,我们创建了一个线性高斯动态贝叶斯网络(LG-DBN)基于辅助可能性的ABC-SMC方法。通过与可以捕获关键相互作用和变化的LG-DBN可能性驱动的摘要统计数据,所提出的算法可以加速混合模型推断,支持过程监测并促进机制学习和稳健的控制。
translated by 谷歌翻译
由细胞疗法制造的关键挑战驱动,包括高复杂性,高不确定性和非常有限的过程数据,我们提出了一个名为“Hybrid-RL”的随机优化框架,以有效地指导过程开发和控制。我们首先创建生物过程概率知识图,该知识图是一种混合模型,其特征在于了解生物制造过程机制和量化固有的随机性,例如批量到批量变化和生物过程噪声。它可以捕获关键特征,包括非线性反应,时变动力学和部分观察到的生物过程状态。该混合模型可以利用现有的机制模型,并促进从过程数据的学习。给定有限处理数据,计算采样方法用于生成量化模型估计不确定性的后样本。然后,我们介绍了混合模型的贝叶斯强化学习(RL),占固有的随机性和模型不确定性,以指导最佳,强大,可解释的决策,这可以克服细胞治疗制造的关键挑战。在实证研究中,细胞治疗制造实施例用于证明所提出的Hybrid-RL框架可以优于经典的确定性机械模型辅助过程优化。
translated by 谷歌翻译
二进制神经网络(BNN)是卷积神经网络(CNN)的极端量化版本,其所有功能和权重映射到仅1位。尽管BNN节省了大量的内存和计算需求以使CNN适用于边缘或移动设备,但由于二进制后的表示能力降低,BNN遭受了网络性能的下降。在本文中,我们提出了一个新的可更换且易于使用的卷积模块reponv,该模块reponv通过复制输入或沿通道维度的输出来增强特征地图,而不是$ \ beta $ times,而没有额外的参数和卷积计算费用。我们还定义了一组Reptran规则,可以在整个BNN模块中使用Repconv,例如二进制卷积,完全连接的层和批处理归一化。实验表明,在Reptran转换之后,一组高度引用的BNN与原始BNN版本相比,实现了普遍的性能。例如,Rep-Recu-Resnet-20的前1位准确性,即REPBCONV增强的RECU-RESNET-20,在CIFAR-10上达到了88.97%,比原始网络高1.47%。 Rep-Adambnn-Reactnet-A在Imagenet上获得了71.342%的TOP-1精度,这是BNN的最新结果。代码和型号可在以下网址提供:https://github.com/imfinethanks/rep_adambnn。
translated by 谷歌翻译
最近,自我监督的预先磨普已经实现了端到端(E2E)自动语音识别(ASR)的令人印象深刻的结果。然而,主要的序列到序列(S2S)E2E模型仍然很难充分利用自我监督的预训练方法,因为其解码器在声学表示上被调节,因此不能分开预先磨损。在本文中,我们提出了一种基于混合CTC /注意E2E模型的预磨削变压器(Preformer)S2S ASR架构,以充分利用预磨削的声学模型(AMS)和语言模型(LMS)。在我们的框架中,编码器初始化了Preprina(Wav2Vec2.0)。 Preformer在训练和推理期间利用CTC作为辅助任务。此外,我们设计了一个十字解码器(OCD),其放宽对声学表示的依赖性,以便可以用预净化的LM(DistilGPT2)初始化它。实验在Aishell-1语料库上进行,并在测试集上达到4.6±6 \%$ Character error rate(cer)。与我们的Vanilla混合CTC /注意力变压器基线相比,我们所提出的CTC /注意力的预浆料产生27亿美元的相对CER减少。据我们所知,这是第一个在S2S ASR系统中使用普里雷米和LM的第一项工作。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译